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Abstract. We consider a ferromagnetic Ising chain evolving under Kawasaki dynamics at zero temperature.
We investigate the statistics of the blocking time, as well as various characteristics of the metastable
configurations reached by the system, including the statistics of the final energy, the spin correlations, and
the distribution of domain sizes. Results of extensive numerical simulations are compared with analytical
predictions made for the a priori ensemble of all blocked configurations with equal weights. Qualitative
differences are found, e.g. in the domain sizes, which are found to be neither statistically independent nor
exponentially distributed.

PACS. 05.70.Ln Nonequilibrium and irreversible thermodynamics – 64.60.My Metastable phases –
75.40.Gb Dynamic properties

1 Introduction

Glassy dynamics is often described as motion in a complex
energy landscape [1], with many valleys separated by bar-
riers. Valleys usually appear as metastable states with a
very long, or even infinite, lifetime. They have been given
various definitions [2–5], which are not equivalent from a
dynamical point of view [6]. One common feature of all
these approaches is the exponential growth with the sys-
tem size of the number of valleys at fixed energy density E:

N (N ; E) ∼ exp(NSap(E)), (1.1)

where Sap(E) is the configurational entropy or complexity.
The subscript ‘ap’ underlines the fact that each valley is
counted with the same a priori weight in the mere combi-
natorial problem of evaluating the configurational entropy.

An important issue concerns the dynamical weight of
valleys, defined as follows. Assuming the initial configura-
tion be random, with which probability does the system
land in a given valley? A simple answer is that valleys
admit a statistical description, just as configurations at
thermal equilibrium. Along this line of thought, the most
natural hypothesis is that all the possible valleys are sam-
pled with equal statistical weights, possibly with the con-
straint that the mean energy is fixed, so that the a priori
entropy (1.1) is also the relevant quantity from a dynami-
cal viewpoint. In other words, dynamical quantities can be
evaluated in a typical valley. More generally, valleys could
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be sampled with non-uniform weights, given by a simple
effective Hamiltonian. The other extreme situation is that
either the size of its basin of attraction (or another kind
of ‘hidden’ detail) really matters for every single valley, so
that the statistics of valleys induced by the dynamics is
highly non-trivial.

The idea that metastable configurations can admit an
a priori description by means of a uniform ensemble seems
to have been first formulated by Edwards [7], in the spe-
cific context of granular materials. Since then, a uniform
measure over metastable configurations is sometimes re-
ferred to as an Edwards measure, and the hypothesis that
such a statistical description holds is termed the ‘Edwards
hypothesis’. We shall come back in the Discussion to the
relationship between the present work and the ideas put
forward by Edwards.

The simplest a priori statistical description, i.e., the
uniform one, is known to apply to the nonequilibrium re-
laxational dynamics of some mean-field models, where val-
leys have been shown to be sampled with equal weights.
As a consequence, the configurational temperature Tap de-
fined by

1
Tap

=
dSap

dE
(1.2)

has a thermodynamical meaning. In particular, it coin-
cides with the effective temperature involved in the gen-
eralized fluctuation-dissipation relation [5].

Leaving the realm of mean-field models for the more re-
alistic situation of models with short-range interactions on
finite-dimensional lattices, one-dimensional spin systems
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with zero-temperature dynamics provide an adequate set-
ting for investigating the dynamical weights of valleys,
and especially for checking whether they admit a sim-
ple a priori statistical description, such as the uniform
one. Indeed, the blocked configurations reached by zero-
temperature dynamics are truly metastable states with
infinite lifetimes. In an earlier work [8] we have addressed
this question for Ising chains evolving under irreversible
zero-temperature dynamics, where each spin may flip at
most once before a blocked state is reached. These dy-
namical models can be exactly mapped onto random se-
quential adsorption problems [9], for which analytical tools
are available. In that relatively simple situation, we found
qualitative differences between dynamical results and the
prediction of the uniform a priori description.

In the present work we pursue the investigation of
metastable states in Ising chains, by considering the richer
and hopefully more realistic situation of zero-temperature
Kawasaki (spin-exchange) dynamics [10]. We allow the
rate W0 of diffusion processes (constant-energy moves) to
vary [11]. If the kinetic constraint W0 = 0 is imposed [12],
only irreversible processes are present [8]. For the uncon-
strained dynamics (W0 > 0), where diffusion processes are
allowed, the dynamics is partly reversible. Each spin only
flips a finite number of times, before the system globally
reaches a blocked state after a finite time. The statistics of
this blocking time is studied in Section 2. We then inves-
tigate various observables in the blocked configurations
reached by the dynamics, starting from a random non-
magnetized initial configuration. The data of extensive nu-
merical simulations, presented in Section 4, are compared
with the predictions of the uniform a priori approach, de-
rived in Section 3. Finally, some aspects of persistence, in
particular the distribution of the number of flips of a given
spin, are discussed in Section 5.

To be more specific, we consider a ferromagnetic chain
of Ising spins σn = ±1, whose Hamiltonian reads

H = −
∑
n

σnσn+1. (1.3)

In Kawasaki dynamics [10], only pairs of opposite spins
may be flipped (+− ↔ −+), so that the magnetization is
locally conserved.

For simplicity, we limit ourselves to Monte-Carlo dy-
namics with random sequential updating, and we assume
that the flipping rate only depends on the energy differ-
ence δH involved in the proposed move. Any given pair of
opposite spins thus has a probability WδH of flipping per
unit time, with

δH = 2(σn−1σn + σn+1σn+2) ∈ {−4, 0, 4}·

The requirement of detailed balance with respect to the
Hamiltonian (1.3) at temperature T = 1/β yields a single
condition,

W4

W−4
= e−4β ,

upon the rates W4, W0, W−4.

Table 1. Allowed moves in zero-temperature Kawasaki
dynamics.

δH type name rate moves

−4 irreversible condensation 1
− + −+ → −− ++

+ − +− → + + −−

0 reversible diffusion W0

+ + −+ ↔ + − ++

− + −− ↔ −− +−

We furthermore restrict ourselves to zero-temperature
dynamics, hence W4 = 0. We choose time units such
that W−4 = 1, keeping W0 as a free parameter. The al-
lowed moves and the corresponding rates are listed in Ta-
ble 1. The zero-temperature limits of the Metropolis and
heat-bath rules correspond respectively to W0 = 1 and
W0 = 1/2. Hereafter we focus our attention on the range
0 ≤ W0 ≤ 1.

2 Statistics of blocking time

Let us first recall that for the kinetically constrained
model (W0 = 0) a finite system consisting of N spins
reaches a blocked configuration after a finite blocking time
TN ∼ ln N , which is the jamming time of the equiva-
lent problem of random sequential adsorption of hollow
trimers [8]. The blocked configurations are characterized
by the property that the spin patterns +−+− and −+−+
are absent. Equivalently, there are at most two consecutive
unsatisfied bonds.

In the present case (W0 > 0) the system still gets
trapped in a blocked configuration. However the diffu-
sive motion of free + spins in domains of − spins, and
vice versa, is allowed. Each free spin will eventually be
annihilated, by meeting either another free spin or one
of the boundaries of the domain. Blocked configurations
of Kawasaki dynamics are therefore characterized by the
property that the patterns + − + and − + − are ab-
sent. Equivalently, isolated spins are absent, or unsatisfied
bonds are isolated.

In order to understand the statistics of the blocking
time TN , we consider first the regime W0 � 1, where
the time scales of condensation and diffusion are well
separated [11]. The fast part of the dynamics, which
occurs with unit rate, is identical to the constrained dy-
namics considered in references [8,12]. For intermediate
times of order 1 � t � 1/W0, the system is therefore
approximately left in one of the final configurations of
the constrained dynamics. The slow, diffusive part of
the dynamics then takes place at rate W0 � 1. The late
stages of the dynamics are governed by large domains,
on which a single free spin diffuses. We assume that such
large domains, of size L � 1, occur with an exponentially
small probability

fdif(L) ∼ exp(−L/ξdif),
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where ξdif is the relevant characteristic length. The spin
diffusion constant reads D = W0 in our units. For a ran-
dom initial point, the survival probability is known [13] to
decay as S(t; L) ≈ (8L/π2) exp(−π2W0t/L2). The mean
density of free spins at time t can therefore be estimated as

S(t) ≈
∑
L

fdif(L)S(t; L)∼
∫ ∞

0

exp
(
− L

ξdif
− π2W0t

L2

)
L dL.

(2.1)

Evaluating the integral by the method of steepest descent,
we thus obtain stretched exponential decay for the density
of free spins:

S(t) ∼ t1/2 exp
(
− (W0t)1/3

Adif

)
, (2.2)

with

Adif =
(

4ξ2
dif

27π2

)1/3

· (2.3)

This behavior, already emphasized in reference [11], is
a general characteristic feature of diffusion processes in the
presence of random traps [13]. The exponent 1/3 is related
to the one-dimensional geometry; it would read d/(d + 2)
for trapping problems in higher spatial dimension d. The
above result should hold for the late stages (W0t � 1)
of Kawasaki dynamics, for any finite value of W0. The
characteristic length ξdif is expected to depend smoothly
on W0.

For a finite system of N spins, the last free spin will be
annihilated at a time TN such that NS(TN) ∼ 1, hence
(W0TN)1/3 ∼ Adif ln N . More precisely, as the histories of
spins diffusing on different domains are statistically inde-
pendent, it can be argued along the lines of [8] that TN is
given according to extreme-value statistics [14] as

(W0TN)1/3 ≈ Adif

(
ln
(
N(ln N)3/2

)
+ b + XN

)
. (2.4)

In this expression, the factor (ln N)3/2 takes account of
the t1/2 prefactor in the survival probability (2.2), while
the effective constant b encompasses all subleading effects
that have been neglected, and the random variable XN is
distributed according to the Gumbel law

f(X) = exp(−X − e−X). (2.5)

These predictions have been checked against extensive
numerical simulations, performed according to the zero-
temperature Kawasaki dynamics summarized in Table 1,
with random sequential updates and periodic boundary
conditions, starting from a random initial configuration
with zero magnetization. The dynamics is run until the
system gets trapped in a blocked configuration. The block-
ing time TN is recorded for each sample. This measure-
ment has been performed for many samples (108 spins
in total for each value of W0 and of N). The mean
〈(W0TN )1/3〉 is found to follow an almost perfect linear

Fig. 1. Plot of the characteristic length ξdif , extracted from the
size dependence of 〈(W0TN )1/3〉, against the rate W0. Symbols:
numerical data. Errors are comparable to the symbol size. Line:
third-degree polynomial fit.

Fig. 2. Distribution of the variable XN defined by (2.4).
Histogram: numerical data for N = 800 (see text). Thick line:
limit Gumbel law (2.5).

law when plotted against ln(N(ln N)3/2), at least for N
ranging from 50 to 3200, whereas the same data plotted
against lnN are bent in a significant way. Using (2.3), the
slope of the latter plot yields the value of the character-
istic length ξdif , which is plotted in Figure 1, against W0.
The error on this estimate, containing a systematic and
a statistical part, is roughly comparable to the symbol
size. The length ξdif exhibits a rather weak dependence
on W0, decreasing from ξdif = 1.77 in the W0 → 0 limit
to ξdif = 1.61 for W0 = 1.

Another confirmation of the above picture is provided
by Figure 2, showing a histogram plot of the variable XN

defined by (2.4), for 125,000 samples of size N = 800, with
W0 = 1. The parameter Adif = 0.339, i.e., ξdif = 1.61, is
taken from the data of Figure 1, while the constant b is
chosen by fitting the average 〈XN 〉. A convincing agree-
ment is found with the limit law (2.5).
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3 Blocked states: a priori ensemble

As already stated, the blocked states of zero-temperature
Kawasaki dynamics are the configurations where isolated
spins are absent. Equivalently, unsatisfied bonds are iso-
lated.

This section is devoted to the statistical description
of the blocked configurations taken with equal a priori
weights. We shall distinguish the full ensemble of all the
blocked configurations, irrespective of their energy, the
restricted ensemble of blocked configurations with pre-
scribed energy density E, and the canonical ensemble of
blocked configurations, obtained by fixing the parameter β
conjugate to the energy density E (see below).

3.1 Statistics of energy and configurational entropy

For a finite chain of N spins, we first investigate the num-
ber N (N ; E) of blocked configurations with prescribed
energy density E. This number can be evaluated by an
elementary combinatorial reasoning [8]. For the sake of
generality, we prefer to resort to the transfer-matrix for-
malism. We introduce the partition function ZN(β), de-
fined as a sum over all the blocked configurations C = {σn}
of the Boltzmann weight associated with the Hamilto-
nian (1.3). We have

ZN(β) =
∑
C

e−βH(C) ≈
∫

N (N ; E) e−βNE dE. (3.1)

In this framework, the parameter β can be positive or
negative, and it is not related to physical temperature.
The transfer matrix is then a very useful tool. Indeed the
partition functions Zα

N , labeled by the prescribed value
α = (σN−1, σN ) of the last two spins, obey the recursion
relation 

Z++
N+1

Z+−
N+1

Z−+
N+1

Z−−
N+1

 = T


Z++

N

Z+−
N

Z−+
N

Z−−
N

 ,

where the 4 × 4 transfer matrix T reads

T =


eβ 0 eβ 0
e−β 0 0 0
0 0 0 e−β

0 eβ 0 eβ

 .

The characteristic polynomial of T factors as det(λ1−
T ) = (λ2 − eβλ − 1)(λ2 − eβλ + 1). The first (resp. the
second) factor yields eigenvalues λ1, λ2 (resp. λ3, λ4), with

λ1,2 =
1
2

(
eβ ±

√
e2β + 4

)
, λ3,4 =

1
2

(
eβ ±

√
e2β − 4

)
.

The left and right eigenvectors 〈La| and |Ra〉 are even
(resp. odd) for a = 1, 2 (resp. a = 3, 4) under the spin
symmetry + ↔ −. We assume that they are normalized

so that 〈La|Rb〉 = δab. Their explicit expressions will not
be needed hereafter.

For large N , we have ZN(β) ∼ λN
1 , as λ1 is the largest

eigenvalue. Using (3.1), we obtain an exponential law of
the form (1.1) for N (N ; E), where the a priori configura-
tional entropy Sap(E) is related to ln λ1(β) by a Legendre
transform:

Sap(E) − ln λ1(β) = βE, E = −d lnλ1

dβ
, β =

dSap

dE
·

Explicitly, we have

E = − eβ

√
e2β + 4

, eβ =
−2E√
1 − E2

, (3.2)

and the a priori entropy reads

Sap(E) = E ln(−2E)+
1 − E

2
ln(1−E)− 1 + E

2
ln(1+E).

This entropy is non-zero for −1 < E < 0. It takes its
maximal value

S� = lnΦ = 0.481212,

where Φ = (1 +
√

5)/2 is the golden mean, for

E� = − 1√
5

= −0.447214, (3.3)

corresponding to β = 0. Equation (3.3) therefore yields
the typical a priori energy density of a blocked configura-
tion.

The result (1.1) can be recast as follows. Consider the
full ensemble of all the blocked configurations, irrespec-
tive of their energy. The probability of observing, in that
ensemble, a blocked configuration with energy density E
reads

Pap(E) ∼ exp (−NΣap(E)) , Σap(E) = S� − Sap(E).
(3.4)

The function Σap(E) vanishes quadratically as

Σap(E) ≈ c (E − E�)2 , c =
5
√

5
8

·

The bulk of the a priori distribution of E is therefore
a narrow Gaussian around E�, whose rescaled variance
asymptotically reads

N VarE = N
(〈

E2
〉
− E�2

)
−→

N→∞
1
2c

=
4
√

5
25

= 0.357771.

The above results also allow to determine the higher
cumulants of the energy in the canonical ensemble (at
fixed parameter β). One has indeed

1
N

ln
〈
esNE

〉
β =

1
N

ln
ZN (β − s)

ZN (β)
−→

N→∞
ln

λ1(β − s)
λ1(β)

·

By expanding this result as a power series in s, we obtain
explicit expressions for the cumulants 〈〈Ek〉〉 as a function
of β.
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As far as mean quantities are concerned, the micro-
canonical or restricted ensemble (fixed energy density E)
and the canonical one (fixed conjugate parameter β) are
equivalent. It is therefore justified to recast canonical re-
sults in terms of the prescribed value E of the mean en-
ergy, using (3.2). Generalizing this equivalence prescrip-
tion to the cumulants of the energy, we obtain

N VarE = N〈〈E2〉〉 −→
N→∞

−E(1 − E2),

N2〈〈E3〉〉 −→
N→∞

−E(1 − E2)(3E2 − 1),

N3〈〈E4〉〉 −→
N→∞

−E(1 − E2)(15E4 − 12E2 + 1).

(3.5)

The results (3.5) can be given the following interpreta-
tion. Fixing β amounts to fixing the extensive part NE of
the energy, while the equivalence prescription is a natu-
ral ansatz to describe the fluctuations of its non-extensive
part.

3.2 Spin correlation function

The spin correlation function Cn = 〈σ0σn〉 in the canoni-
cal a priori ensemble can also be evaluated by the transfer-
matrix method. In the bulk of an infinitely long chain, and
for n ≥ 0, we have

Cn =
〈L1|ST nS|R1〉

λn
1

=
∑

a

〈L1|S|Ra〉 〈La|S|R1〉
(

λa

λ1

)n

,

(3.6)
where

S =

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1


is the spin operator.

Because of symmetry, only the eigenvectors with
a = 3, 4 contribute to the above sum. The values C0 = 1
and C1 = −E allow to determine the products of ma-
trix elements entering (3.6), without knowing the eigen-
vectors explicitly. The following alternative reasoning can
also be used. Being a linear combination of (λ3/λ1)n and
(λ4/λ1)n, Cn can be shown to obey the three-term recur-
sion relation

(1 − E)Cn+2 + 2ECn+1 + (1 + E)Cn = 0.

The initial values C0 = 1 and C1 = −E are therefore
again sufficient to determine the correlation function for
all values of the distance n.

For −1/
√

2 ≤ E ≤ 0, which contains the range of final
energies reached by the dynamics, λ3,4 = exp(±iQ) are
complex numbers with unit modulus, with

tan Q =
√

1 − 2E2

−E
(0 ≤ Q ≤ π/2). (3.7)

We are thus led to the expression

Cn =
(

1 + E

1 − E

)n/2(
cosnQ +

E2

√
1 − 2E2

sin nQ

)
,

(3.8)
for n ≥ 0. In the a priori ensemble, the spin correlation
function therefore exhibits an exponential decay, of the
form exp(−n/ξspin), modulated by oscillations at wavevec-
tor Q. Both the correlation length

ξspin =
2

ln
1 − E

1 + E

(3.9)

and the wavevector Q, given by (3.7), depend continuously
on energy.

We finally quote for further reference the value of the
reduced susceptibility

χ̂ =
∞∑

n=−∞
Cn. (3.10)

After some algebra, we obtain the simple result

χ̂ =
−E(1 − E)

1 + E
· (3.11)

3.3 Distribution of domain sizes

Another characteristic feature of blocked states is the dis-
tribution of domain sizes f(�), defined as the probability
that a given domain consists exactly of � consecutive par-
allel spins. Since isolated spins are absent, domains have
at least size two (� ≥ 2).

In the a priori ensemble, the distribution f(�) can
again be evaluated by the transfer-matrix method. In-
deed ρ(�), the density (per unit length) of domains con-
sisting of exactly � spins, admits an expression similar to
the middle side of (3.6), namely

ρ(�) =

〈
L1|P e(�−2)β|R1

〉
λ�

1

= 〈L1|P|R1〉
1 + E

1 − E

(
−2E

1 − E

)�−2

,

where

P = (|+−〉〈−+ |) + (|−+〉〈+−|) =

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0


is the appropriate domain boundary operator. The explicit
expression of the matrix element is not needed, as it can be
fixed by normalization. The probability distribution f(�)
of domain sizes indeed reads f(�) = ρ(�)/ρ, where ρ is
the total density of domains (or equivalently, of domain
walls).
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We thus obtain the geometric (i.e., discrete exponen-
tial) probability distribution

f(�) =
1 + E

1 − E

(
−2E

1 − E

)�−2

(3.12)

for � ≥ 2, and consistently

ρ =
∞∑

�=2

ρ(�) =
1
〈�〉 =

1 + E

2
= 〈L1|P|R1〉 · (3.13)

The characteristic length of (3.12),

ξdom =
1

ln
1 − E

−2E

, (3.14)

is in general different from the spin correlation length ξspin

of (3.9), except for the typical value of energy (3.3), where
ξspin = ξdom = 1/S�.

The mean of the domain size distribution (3.12) agrees
with (3.13), while its variance reads

Var � =
∞∑

�=2

�2f(�) − 〈�〉2 =
−2E(1 − E)

(1 + E)2
·

Consider now a large sample of N spins, in the canoni-
cal a priori ensemble (fixed parameter β). The number M
of domains in the sample is such that N = �1 + · · ·+ �M is
the sum of M independent variables distributed according
to f(�), neglecting boundary effects. The expected number
of domains and its variance are given by

〈M〉
N

−→
N→∞

1
〈�〉 =

1 + E

2
,

VarM

N
−→

N→∞
Var �

〈�〉3 =
−E(1 − E2)

4
· (3.15)

One has therefore

N VarE =
4 VarM

N
−→

N→∞
4 Var �

〈�〉3 , (3.16)

so that the second result of (3.15) agrees with expres-
sion (3.5) for N VarE.

4 Blocked states: dynamics

In this section we compare the predictions of the a priori
approach, derived in Section 3, to the results of numerical
simulations concerning the blocked configurations reached
by the dynamics. We have used the rules of the zero-
temperature Kawasaki dynamics summarized in Table 1,
with random sequential updates, starting from a random
non-magnetized initial configuration.

Fig. 3. Plot of the mean final energy E against the rate W0.
Symbols: numerical data. Statistical errors are smaller than
the symbol size. Line: fifth-degree polynomial fit, yielding the
extrapolated value (4.3) in the W0 → 0 limit.

4.1 Mean energy

The first and the simplest quantity to be measured is the
mean energy E of the blocked configurations reached by
the dynamics.

Let us start with a reminder of the kinetically con-
strained model (W0 = 0). For a random initial configu-
ration, the two kinds of allowed defects, namely isolated
unsatisfied bonds (domain walls) and domains of two un-
satisfied bond (isolated spins) occur respectively with the
following densities in blocked configurations [8,12]:

q1 =
1
2

(
1 − e−5/4 − e−9/4

∫ 3/2

1

ey2
dy

)
= 0.219704,

q2 =
e−5/4

4
= 0.071626, (4.1)

so that the mean energy of blocked configurations reads

E0 = −1 + 2q1 + 4q2 = −e−9/4

∫ 3/2

1

ey2
dy = −0.274087.

(4.2)
In the present case (W0 
= 0), the mean energy E of

blocked states is expected to be below this number. Indeed
the diffusive moves can only help relaxing more efficiently
the energy excess of the disordered initial state.

Figure 3 shows a plot of the mean final energy E
against the diffusive rate W0. Each data point corresponds
to 108 spins in total. We have checked that no apprecia-
ble size dependence is to be observed. The final energy
is found to be well below (4.2), and below the typical
a priori value (3.3). It only exhibits a very weak depen-
dence on the rate W0, increasing from the extrapolated
minimum value

E(0) = −0.5279 (4.3)
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Table 2. First four scaled cumulants of the energy of the blocked configurations. Comparison between numerical results and
predictions of the full and restricted a priori ensembles (see text).

scaled cumulant numerical result full a priori restricted a priori

〈〈E〉〉 = E −0.51633 −0.44721 −0.51633

N〈〈E2〉〉 = N Var E 0.3446 0.35777 0.37868

N2〈〈E3〉〉 0.031 −0.14311 −0.07582

N3〈〈E4〉〉 −0.46 −0.28622 −0.42906

in the W0 → 0 limit to the maximum value

E(1) = −0.51633 (4.4)

for W0 = 1.
The regime W0 � 1 again deserves some more atten-

tion. The mean energy has a discontinuity at W0 = 0. In-
deed the W0 → 0 limit of the energy, E(0) given by (4.3), is
different from that of the constrained dynamics, E0 given
by (4.2). This discontinuity can be analyzed as follows. In
the diffusive part of the dynamics, free spins annihilate by
meeting either each other or domain walls. The collision
of a single free spin with a domain wall relaxes 4 units of
energy, while the coalescence between n ≥ 2 spins within
a domain relaxes 4(n− 1) units of energy, i.e., 4(n− 1)/n
per spin. If all the free spins were annihilated in meet-
ing domain walls, the final energy would assume the value
E = E0 − 4p2. The efficiency of the diffusive relaxation
mechanism can therefore be characterized by the ratio

η =
E0 − E(0)

4p2
= 1 −

∑
n≥2

Πn

n
,

where Πn is the probability that a given free spin gets
annihilated in a coalescence of n ≥ 2 spins. The extrap-
olated value (4.3) of the final energy yields a rather high
efficiency: η = 0.886.

In view of the weak dependence of the final energy
on the rate W0 (see Fig. 3), hereafter we restrict the nu-
merical analysis to the case W0 = 1 of zero-temperature
Metropolis dynamics.

4.2 Higher cumulants of energy

We now turn to the statistics of the energy of the blocked
configurations, besides its mean value studied above. In
analogy with the a priori estimate (3.4), the final energy
is expected to obey a large-deviation formula of the type

P (E) ∼ exp(−NΣ(E)),

with Σ(E) being the dynamical entropy. This formula
implies that the cumulants of the total energy scale as
〈〈(NE)k〉〉 ∼ N , just as in usual equilibrium situations.

Instead of measuring the whole function Σ(E), which
would require a quite extensive numerical effort, we have
measured the first four cumulants of the energy of the

blocked configurations. Table 2 gives the measured values
of the scaled energy cumulants for W0 = 1 and a random
initial configuration. For comparison we also list the pre-
dictions of the full a priori ensemble (3.5) for E = E�

of (3.3), and of the restricted a priori ensemble, obtained
by inserting into (3.5) the observed value (4.4) of the mean
energy. The simulations have been performed on samples
of various sizes ranging from N = 50 to 200, having 1010

spins in total. No systematic size dependence is observed.
Statistical errors can be estimated to be of the order of one
unit of the least significant digit. Both a priori schemes
perform very unequally in predicting the energy cumu-
lants. The variance is rather accurately predicted by both
schemes, which perform equally poorly for the third cu-
mulant, while the restricted scheme is definitely better for
the fourth cumulant.

4.3 Spin correlation function

We now turn to the spin correlation function Cn =
〈σ0σn〉 in the blocked configurations. This quantity has
two remarkable properties. First, since isolated spins
are not allowed in blocked configurations, we have
C1 = 1 − 2ρ = −E and C2 = 1−4ρ, where ρ is the density
of domain walls (3.13), hence

C2 = 2C1 − 1. (4.5)

Second, the total magnetization M =
∑

n σn is exactly
conserved in Kawasaki dynamics. Furthermore, for a ho-
mogeneous non-magnetized state, we have 〈M2〉 = Nχ̂,
with the definition (3.10). The quantity χ̂ therefore has
the same value in the initial and final configurations, i.e.,
for a random initial state,

χ̂ =
∞∑

n=−∞
Cn = 1. (4.6)

Figure 4 shows a comparison between numerical data
(circles and full line), corresponding to 3 × 109 spins in
total, and the prediction (3.8) of the restricted a priori
ensemble at the observed mean energy (4.4) (triangles and
dashed line). The a priori prediction and numerical data
coincide both for n = 1 (by construction, as E has been
imposed) and for n = 2 (as a consequence of (4.5)). For
larger distances, the spin correlations oscillate in sign and
fall off exponentially, in qualitative agreement with the
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Fig. 4. Logarithmic plot of the absolute value of the spin cor-
relation function |Cn|, against distance n. Full (open) symbols
show positive (negative) correlations. Circles and full line: nu-
merical data. Statistical errors are smaller than the symbol
size. Triangles and dashed line: prediction (3.8) of restricted
a priori ensemble at energy (4.4).

a priori prediction. Both the period of oscillations and the
decay length are observed to be slightly larger than those
of the a priori ensemble. These observations remain how-
ever at a qualitative level. We also notice that the a priori
ensemble fails to reproduce the identity (4.6). Indeed χ̂

of (3.11) equals unity for E = 1−
√

2 = −0.414214, a value
which neither agrees with the most probable a priori en-
ergy E� of (3.3), nor with the observed mean energy (4.4).
Conversely, the prediction for the correlation function of
the restricted a priori ensemble at energy (4.4), plotted in
Figure 4, has χ̂ = 1.6192, which is significantly different
from unity.

4.4 Distribution of domain sizes

We have determined the distribution of domain sizes f(�)
by means of extensive numerical simulations, with a ran-
dom initial state. Figure 5 shows our data corresponding
to 3× 109 spins in total. The observed distribution is not
exponential, at variance with the prediction (3.12) of the
a priori ensemble. The full line suggests an exponential
asymptotic fall-off of the distribution, with a characteris-
tic length ξdom = 1.75. This length is close to the char-
acteristic length of domains with a single diffusive spin,
ξdif = 1.61, plotted in Figure 1. As a matter of fact, the
equality ξdom = ξdif is expected to hold in the W0 → 0
limit. The prediction (3.12) of the restricted a priori en-
semble at the observed mean energy (4.4) is shown as a
straight dashed line, whose inverse slope is the prediction
ξdom = 2.603 (3.14) of the a priori approach.

Another noticeable difference with the prediction of
the a priori approach is that the sizes of successive do-
mains in the final states of the dynamics are not indepen-
dent. Indeed, if they were so, the relation (3.16) would
hold, while the data yield 4 Var �/〈�〉3 = 0.2790, a num-
ber significantly below the observed variance N VarE =

Fig. 5. Logarithmic plot of the probability distribution f(�)
against domain size �. Circles: numerical data. Statistical er-
rors are much smaller than the symbol size. Dashed straight
line: prediction (3.12) of a priori ensemble at energy (4.4). Full
straight line: guide to the eye with inverse slope ξdom = 1.75.

0.3446, listed in Table 2. Hence domain sizes exhibit a
weak but definite positive correlation. Domain sizes which
are neither statistically independent nor exponentially dis-
tributed have also been observed recently [15] in spin
chains undergoing tapping dynamics.

5 Features of persistence

We now turn to features related to the whole history of a
single given spin, say σ0, the spin situated at the origin.
This kind of problems belongs to the realm of persistence.
In the present context, the central quantity is ν, the total
number of times σ0 flips during the history of the sample,
before a blocked configuration is reached. The number ν
of spin flips is finite with unit probability in the limit
of a large system. Zero-temperature Kawasaki dynamics
is therefore of type F in the classification of [16]. Fur-
thermore ν is random, as it depends both on the initial
configuration and on the history of the system. We are
therefore interested in the distribution pν of the number
of flips, which is expected to have a well-behaved limit
when σ0 is deep inside a large enough sample.

Before presenting numerical data, we first predict the
main salient features of the distribution pν , following the
lines of Section 2. Consider again a large domain of L � 1
spins, containing the origin, on which a single free spin
diffuses. The spin σ0 flips twice each time the free spin
traverses the origin. We are thus led to the following ef-
fective problem.

Consider a random walker in the interval −L1 < n <
L2, with absorbing boundaries at n = −L1 and n = L2.
The walker starts from the origin (n = 0). The probability
that the walker returns to the origin before being absorbed
by either boundary reads

Pret(L1, L2) = 1 − 1
2

(
1
L1

+
1
L2

)
· (5.1)
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This formula relies on a well-known result in the gam-
bler’s ruin problem [17]. Indeed, suppose that the walker’s
first jump is to the right (resp. to the left), and consider
0 ≤ n ≤ L2 (resp. 0 ≤ −n ≤ L1) as the gambler’s wealth.
Then the ruin probability reads P = 1 − 1/L2 (resp. P =
1 − 1/L1). The expression (5.1) is the arithmetical mean
of both ruin probabilities.

The probability that σ0 flips an even number ν = 2k �
1 of times therefore approximately reads p2k(L1, L2) ∼
(Pret(L1, L2))k(1 − Pret(L1, L2)). Hence the distribution
of the number of flips can be estimated, in analogy
with (2.1), as

p2k ≈
∑

L1,L2

(L1 + L2 − 1) fdif(L1 + L2 − 1)

×Pret(L1, L2)k(1 − Pret(L1, L2))

∼
(∫ ∞

0

exp
(
− L

ξdif
− k

2L

)
dL

)2

.

The integral entering this expression closely resembles
that entering (2.1). For k � 1 it is legitimate to use
the steepest-descent method. The saddle point lies at
Lc =

√
kξdif/2. We thus obtain the stretched exponen-

tial law

p2k ∼
√

k exp

(
−2

√
2k

ξdif

)
(5.2)

for the distribution of the number of spin flips, provided
ν = 2k is a large even number.

The occurrence of odd numbers ν = 2k + 1 of spin
flips can also be explained in the above framework, if the
spin σ0 is either situated at an endpoint of a domain, or
involved in a coalescence event between two free spins.
Both effects are expected to scale as the inverse of the
domain size L. This leads us to predict that odd values
of ν are suppressed by a factor of order 1/Lc, i.e.,

p2k+1

p2k
≈ a√

kξdif
· (5.3)

Figure 6 shows a logarithmic plot of the distribution pν

of the number of flips. The simulations again concern sam-
ples of various sizes having 2 × 1010 spins in total, with
W0 = 1. Even numbers of spin flips ν = 2k (full symbols)
are clearly more frequent than odd numbers ν = 2k + 1
(open symbols), especially for large values of k. From a
quantitative viewpoint, the full lines on Figure 6 show a
common fit of the numerical data for ν > 10 according
to the asymptotic predictions (5.2), (5.3). We thus obtain
2/

√
ξdif ≈ 1.55, in agreement with the data of Figure 1,

ξdif ≈ 1.61, i.e., 2/
√

ξdif ≈ 1.57. We also obtain a ≈ 1.5,
albeit with a large uncertainty.

Besides the above analysis of the regime of large num-
bers of spin flips, due to long surviving free spins, our data
yield yet other interesting informations. First, the persis-
tence probability, i.e., the probability for a spin to never
flip, has the following value:

p0 = 0.44739.

Fig. 6. Logarithmic plot of the distribution pν of number of
flips. Full symbols: data for ν = 2k even. Open symbols: data
for ν = 2k + 1 odd. Statistical errors are much smaller than
the symbol size. Full lines: common fit described in the text.

Then, the probability that a spin flips an even or an odd
number of times reads

Peven =
∑
k≥0

p2k = 0.72302,

Podd =
∑
k≥0

p2k+1 = 1 − Peven = 0.27698.

These figures can be related to the overlap between a ran-
dom initial configuration and the corresponding final one.
We have indeed

Q = 〈σ0(0)σ0(∞)〉 =
∑
ν≥0

(−1)νpν = Peven−Podd = 0.44604.

The mean number of spin flips reads

〈ν〉 =
∑
ν≥0

ν pν = 2.06916.

This quantity can be used to determine the fractions fcond

of condensation moves and fdif of diffusive moves in a
typical history, starting from a random initial configura-
tion. Indeed, on the one hand, a condensation move low-
ers the total energy by four units, while a diffusive moves
leaves it unchanged (see Tab. 1). On the other hand, any
move involves exactly two spin flips. We have therefore,
using (4.4),

fcond = 1 − fdif = − E

2〈ν〉 = 0.12477.

To close up, let us compare the above results to the
case of constrained Kawasaki dynamics (W0 = 0) [8,12],
where only condensation moves are allowed. In this situ-
ation, the above quantities can be simply related to the
final energy E0 of (4.2). Indeed every spin flips at most
once, so that only p0 and p1 = 1 − p0 are non-zero, and
fcond = 1. Starting again from a random configuration, we
are left with

2(1 − p0) = 1 − Q = 2〈ν〉 = −E0 = 0.274087.
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Table 3. Four different zero-temperature dynamics of the ferromagnetic Ising chain, with appropriate references (brackets).

conserved

magnetization

diffusive

moves
dynamics behavior

no yes Glauber [18] coarsening [19]

no no constrained Glauber [20] metastability [8]

yes yes Kawasaki [10] metastability [this work]

yes no constrained Kawasaki [12] metastability [8]

6 Discussion

First, we wish to emphasize the richness of the zero-
temperature dynamics of the ferromagnetic Ising chain.
There are indeed four different natural kinds of dynamics,
summarized in Table 3. Only Glauber dynamics gives rise
to a bona fide coarsening dynamics, obeying dynamical
scaling with a typical domain size growing as L(t) ∼

√
t.

With the three other dynamics, the system is left in a
metastable configuration after a relatively short blocking
time. The constrained Glauber and Kawasaki dynamics
have been analyzed in our previous work [8]. Each spin
may flip at most once, before a global blocked state is
reached. The blocking time scales with the number of spins
as ln N . These models can be exactly mapped onto the
random sequential addition problem of dimers and hollow
trimers, respectively, hence allowing an analytical treat-
ment.

The last case not considered so far from the viewpoint
of metastability, Kawasaki dynamics, has been the subject
of this work. Because of the diffusive moves, the dynam-
ics is only partly irreversible. This novel feature makes
the Kawasaki problem both richer and hopefully closer to
more realistic situations. The number of flips of a given
spin, although finite with probability one, may be arbi-
trarily large. The blocking time grows as (lnN)3. On the
other hand, analytical tools being no longer available, we
needed to have recourse to numerical simulations.

First, we wish to underline that the description of the
late stages of the zero-temperature Kawasaki dynamics in
terms of an effective trapping problem for single free spins,
already emphasized in reference [11], appears to yield
quantitative predictions for several novel physical quan-
tities, including the statistics of the blocking time ((2.4),
(2.5), Fig. 2), and the distribution of the number of spin
flips ((5.2), (5.3), Fig. 6).

Next, the present work demonstrates that the a priori
uniform ensemble fails to describe the metastable states
reached by Kawasaki dynamics. Systematic differences
are indeed observed between numerical results and
a priori predictions, especially in the pattern of spin
correlations (Fig. 4) and in the distribution of domain
sizes (Fig. 5). The latter are neither statistically indepen-
dent nor exponentially distributed. These findings cor-
roborate those of a previous work [8], devoted to con-
strained Glauber and Kawasaki dynamics, where we have
already underlined qualitative differences between dynam-

ical quantities and a priori predictions in the uniform en-
semble.

To close up, we come back to the so-called ‘Edwards
hypothesis’, as this concept has been quite commonly used
in recent works. On the one hand, if this expression is
taken in a broad sense, meaning that metastable con-
figurations should be weighted with a uniform a priori
measure, then it is invalidated in the one-dimensional ki-
netic Ising models investigated both in [8] and in the
present work. On the other hand, the concept of flatness
among metastable configurations had been put forward by
Edwards in the rather specific context of granular materi-
als subjected to ‘gentle’ dynamical perturbations. Accord-
ingly, the Edwards hypothesis should rather be expected
to apply to states reached under smoothly varying ex-
ternal conditions. The Edwards hypothesis ‘stricto sensu’
has indeed been found to hold, at least as a good approxi-
mation, in a broad variety of granular systems and of spin
models under tapping at a low intensity [21], and for some
tapping mechanisms [15]. In this context, our findings do
not invalidate the Edwards hypothesis ‘stricto sensu’, as
relaxational dynamics from a disordered initial state for-
mally corresponds to tapping with an infinitely high in-
tensity.

Interesting discussions with Silvio Franz are gratefully
acknowledged.
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